

EtherCAT Bus Expansion Module

EI024088

Vision Motion Controller

Motion Controller

Motion Control Card

IO Expansion Module

НМІ

Foreword

Zmotion[®]

The motion controller provides rich interface, and it has excellent motion control performance, which can meet the expansion requirements of various projects.

This manual is copyrighted by Shenzhen Technology Co., Ltd., without the written permission of the Zmotion Technology, no person shall reproduce, translate and copy any content in this manual. The above-mentioned actions will constitute an infringement of the copyright of the company's manual, and Zmotion will investigate legal responsibility according to law.

For details about the ZMC controller software and the introduction and routine of each command, please refer to the ZBASIC software manual.

Information contained in this manual is only for reference. Due to improvements in design and functions and other aspects, Zmotion Technology reserves the final interpretation! Subject to change without notice!

Pay attention to safety when debugging the machine!

Please be sure to design an effective safety protection device in the machine, and add an error handling program in the software, otherwise Zmotion has no obligation or responsibility for the loss caused.

In order to ensure the safe, normal and effective use of the product, please be sure to read this product manual carefully before installing and using the product.

Safety Statement

- This chapter describes the safety precautions required for the correct use of this product. Before
 using this product, please read the instructions for use and correctly understand the relevant
 information on safety precautions.
- This product should be used in an environment that meets the design specifications, otherwise
 it may cause equipment damage or personal injury, and malfunctions or component damage
 caused by failure to comply with relevant regulations are not within the scope of product quality
 assurance.
- Zmotion will not take any legal responsibility for personal safety accidents and property losses caused by failure to comply with the contents of this manual or illegal operation of products.

Safety Level Definition

According to the level, it can be divided into "Danger" and "Caution". Failure to operate as required may result in moderate injury, minor injury or equipment damage.

Please keep this guide in a safe place for reading when needed, and be sure to hand this manual to the end user.

Install

Danger

- When the controller is disassembled, all external power supplies used by the system should be disconnected before operation, otherwise it may cause misoperation or damage to the equipment.
- It is forbidden to use in the following places: places with dust, oil fume, conductive dust, corrosive gas and flammable gas; places exposed to high temperature, condensation, wind and rain; places with vibration and shock. Electric shock, fire and misuse can cause product damage and deterioration.

Notice

- Avoid metal shavings and wire ends falling into the hardware circuit board during installation.
- ◆ After installation, ensure that there are no foreign objects on the hardware circuit board.
- When installing, make it tightly and firmly with the mounting frame.

• Improper installation of the controller may result in misoperation, failure and fire.

Wiring

The specifications and installation methods of the external wiring of the equipment shall comply with the requirements of local power distribution regulations.

- Danger
- When wiring, all external power supplies used by the system should be disconnected before operation.
- When powering on and running after the wiring work is completed, the terminals attached to the product must be installed.
- Cable terminals should be well insulated to ensure that the insulation distance between cables will not be reduced after the cables are installed on the terminal block.
- Avoid metal shavings and wire ends falling into the hardware circuit board during installation.
- ◆ The cable connection should be carried out correctly on the basis of confirming the type of the connected interface.

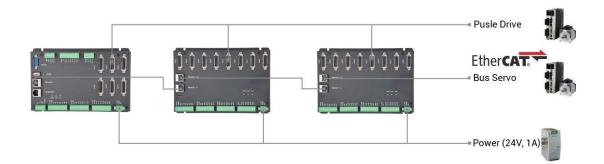
- Notice
- It should be confirmed that the cables pressed into the terminals are in good contact.
- Do not bundle the control wires and communication cables with the main circuit or power supply wires, etc., and the distance between the wires should be more than 100 mm, otherwise noise may cause malfunction.
- ◆ If the controller is not installed properly, it may cause electric shock or equipment failure or malfunction.

Content

Cha	pter	I Prod	duction Information	3					
	1.1.	Pro	oduct Information	3					
	1.2.	Function Features							
	1.3.	3. System Frame							
	1.4.	На	ardware Installment	4					
Cha	pter	II Prod	duct Specification	6					
	2.1.	Inte	terface Definition	6					
	2.2.	Ord	der Information	7					
	2.3.	Wo	ork Environment	7					
Cha	pter	III Wir	ring, Communication Configuration	8					
	3.1.	Po	wer Input	8					
	3.2.	Po	wer Specification	8					
	3.3.	IN	Digital Input	9					
		3.3.1	. Digital Input Specification	10					
		3.3.2	2. Digital Input Wiring	10					
	3.4.	OU	JT Digital Output	11					
		3.4.1	. Digital Output Specification	11					
		3.4.2	2. Digital Output Wiring	12					
	3.5.	Eth	herCAT Bus Interface	12					
	3.6.	AX	(IS Differential Pulse Axis Interface	14					
		3.6.1	. AXIS Interface Signal Specification & Wiring	16					
Cha	pter	IV Exp	pansion Module	19					
	4.1.	Eth	herCAT Expansion Wiring Reference	19					
	4.2.	Eth	herCAT Expansion Module Usage	20					
	4.3.	Eth	herCAT Bus Expansion Resource Mapping	22					
Cha	pter	V Dat	ta Dictionary	24					

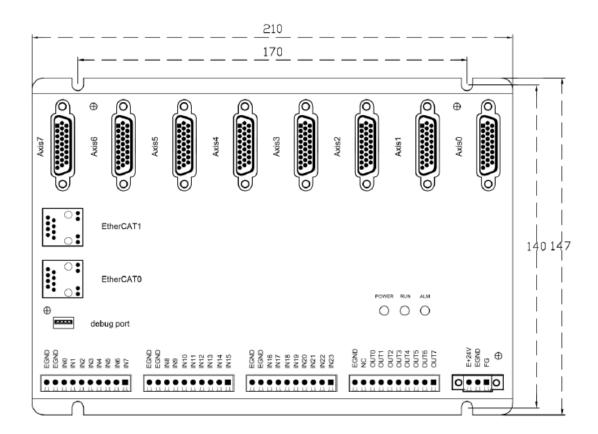
5.1.	Input & Output	24
5.2.	The First Drive on The First Expansion Module	24
Chapter V	/I Run and Maintain	27
6.1.	Regular Inspection and Maintenance	27
6.2.	Common Problems	28

Chapter I Production Information


1.1. Product Information

EIO24088 bus expansion module is used for EtherCAT bus controller, when IO and other resources are not enough, an expansion module is needed. And controller can link with multiple EtherCAT expansion modules through EtherCAT bus at the same time. And IO and axis resources of EIO24088 can be accessed by mapping Number.

1.2. Function Features


- Axis expansion: 8-axis pulse-axis expansion.
- Digital expansion: there are 24 inputs and 8 outputs, each pulse axis has one additional input and one additional output that can be configured.
- Pulse output mode: pulse / direction or dual pulses.
- ◆ Maximum pulse output frequency of each axis is 10MHZ.
- ◆ The maximum output current of outputs (except pulse-axis) can reach 300mA, which can directly drive some kinds of solenoid valves.

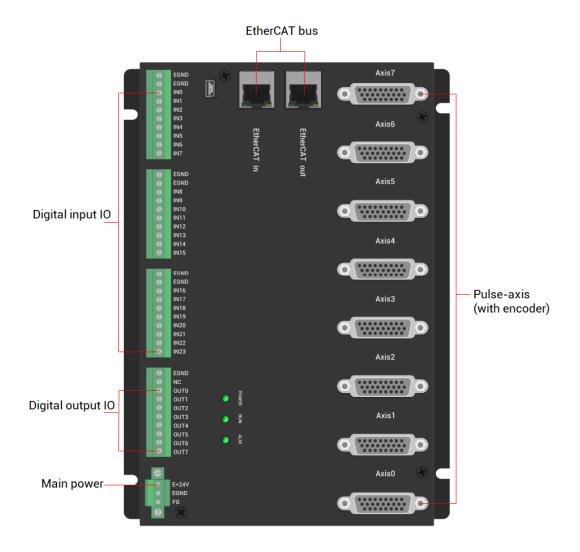
1.3. System Frame

1.4. Hardware Installment

EIO24088 bus expansion module is installed horizontally with screws, and each controller should be fastened with 4 screws.

 \rightarrow Unit: mm

→ Mounting Hole Diameter 4.5mm



- Non-professionals are strictly prohibited to operate. Specifically, professionals who had been trained related electrical equipment, or who master electrical knowledge.
- Please be sure to read the product instruction manual and safety precautions carefully before installation.
- Before installation, please ensure that the product is powered off.
- Do not disassemble the module, otherwise the machine may be damaged.
- Avoid direct sunlight installation.
- In order to facilitate ventilation and controller replacement, 2-3cm should be left between the upper and lower parts of the controller and the installation environment and surrounding components.

- Considering the convenient operation and maintenance of the controller, please do not install the controller in the following places:
 - a) places where the surrounding ambient temperature exceeds the range of -20°C-60°C
 - b) places where the ambient humidity exceeds the range of 10%-95% (non-condensing)
 - c) places with corrosive gases and flammable gases
 - d) places with many conductive powders such as dust and iron powder, oil mist, salt, and organic solvents

Chapter II Product Specification

2.1. Interface Definition

Mark	Interface	Number	Description		
POW	The led that indicates	Power state: it lights when conducted.			
RUN	the current state.	1	Run state: it lights when runs normally		
ALM		1	Error state: it lights when runs incorrectly		
EtherCAT IN		1	Connect to main controller or former level		
EUIEICAI IN	EtherCAT bus		expansion module.		
EtherCAT OUT	interface	1	Connect to drive equipment or behind level		
Liller CAT OUT		1	expansion module.		

Digital input	24	NPN type, main power 24V.
Digital output	8	NPN type, main power 24V.
Main a come	1	24V DC power supplies for main control area
Main power	I	of expansion module.
Dulas suis	8	Each can be configured as differential pulse
Pulse axis		output and differential encoder input.

2.2. Order Information

Model	Axes	s Encoder	Inner	Inner	ECAT IN /	Functions
Model			IN	OUT	EACT OUT	runctions
						Module: EIO1616M
EIO1616	-	-	16	16	1/1	Module + cover:
						EIO1616MT
EIO16084	4	4	16	8	1/1	4-axis expansion
EIO24088	8	8	24	8	1/1	8-axis expansion

2.3. Work Environment

	Item	Parameters
Work T	emperature	-10℃-55℃
Work rela	ative Humidity	10%-95% non-condensing
Storage	Temperature	-40°C ~80°C (not frozen)
Storaç	ge Humidity	Below 90%RH (no frost)
	Frequency	5-150Hz
vibration	Displacement	3.5mm(directly install)(<9Hz)
Vibration	Acceleration	1g(directly install)(>9Hz)
	Direction	3 axial direction
Shoo	k (collide)	15g, 11ms, half sinusoid, 3 axial direction
Degree of Protection		IP20

Chapter III Wiring, Communication

Configuration

3.1. Power Input

The power supply input adopts a 3Pin (there are all 3 terminals) screw-type pluggable wiring terminal. And it is 24V DC power.

→ Terminal Definition:

Terminal	Name	Туре	Function
● E+24V	E+24V	Input	Positive (+) terminal of DC power input (connect positive of power to positive of controller)
• EGND FG	EGND	Input	Negative (-) terminal of power input
	FG	Earthing (Grounding)	Protect

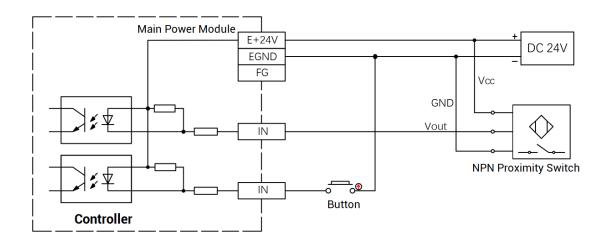
3.2. Power Specification

→ Specification

Item	Description
Voltage	DC24V(-10%~10%)
The current to open	≤0.5A
The current to work	≤0.4A
Anti-reverse connection	Valid
Overcurrent Protection	Valid

3.3. IN Digital Input

→ Terminal Definition


Term	inal	Name	Type	Function 1
	EGND	EGND	/	External power ground
0	EGND	EGND	/	External power ground
	IN0	IN0		Input 0
	IN1	IN1		Input 1
	IN2	IN2		Input 2
	IN3	IN3	NPN type,	Input 3
0	IN4	IN4	digital inputs	Input 4
0	IN5	IN5		Input 5
	IN6	IN6		Input 6
	IN7	IN7		Input 7
	EGND	EGND	/	External power ground
0	EGND	EGND	/	External power ground
	IN8	IN8		Input 8
	IN9	IN9		Input 9
	IN10	IN10		Input 10
0	IN11	IN11	NPN type,	Input 11
	IN12	IN12	digital inputs	Input 12
	IN13	IN13		Input 13
	IN14	IN14		Input 14
	IN15	IN15		Input 15
	EGND	EGND	/	External power ground
O	EGND	EGND	/	External power ground
	IN16	IN16		Input 16
	IN17	IN17		Input 17
	IN18	IN18		Input 18
	IN19	IN19	NPN type,	Input 19
	IN20	IN20	digital inputs	Input 20
0	IN21	IN21		Input 21
	IN22	IN22		Input 22
	IN23	IN23		Input 23

3.3.1. Digital Input Specification

Item	Digital input (IN0-23)	
Input mode	NPN type, input is triggered when in low-electric level	
Frequency	< 5kHz	
Impedance	4.7ΚΩ	
Voltage level	DC24V	
The voltage to open	<14.5V	
The voltage to close	>14.7V	
Minimal current	-1.8mA (negative)	
Max current	-6mA (negative)	
Isolation mode	optoelectronic isolation	

Note: the above parameters are standard values when the voltage of expansion module power supply (E+24V port) is 24V.

3.3.2. Digital Input Wiring

→ Wiring Note:

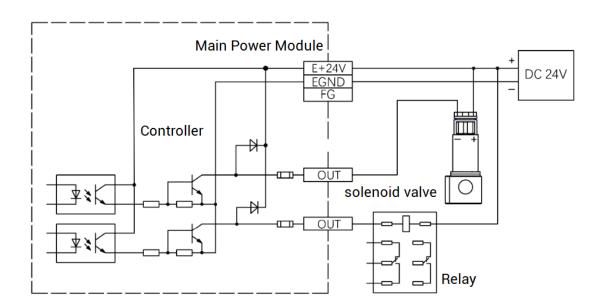
- The wiring principle of digital inputs IN (0-23) is shown in the figure above. The
 external signal source can be an optocoupler, a key switch or a sensor, etc., all can
 be connected as long as the requirements on output of electric level can be achieved.
- For the public end, please connect the "EGND" port on the power supply to the "COM" terminal of the external input device. If the signal area power supply of the external device and the power supply of the expansion module are in the same power supply

system, this connection also can be omitted.

3.4. OUT Digital Output

→ Terminal Definition

Termi	nal	Name	Туре	Function
		EGND	/	External power ground
0	EGND NC	NC	/	Spare
O	OUT0	OUT0		Output 0
0	OUT1	OUT1		Output 1
0	OUT2	OUT2		Output 2
•	OUT3	OUT3	NPN leakage,	Output 3
0	OUT4	OUT4	digital outputs	Output 4
0	OUT5	OUT5		Output 5
0	OUT6 OUT7	OUT6		Output 6
	0017			Output 7

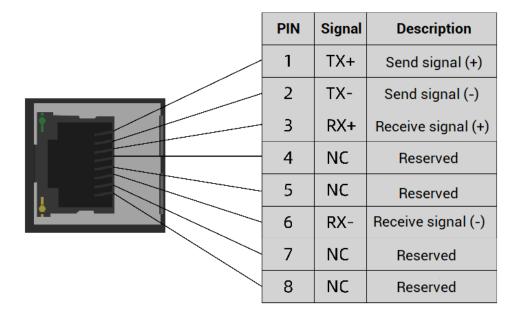

3.4.1. Digital Output Specification

Item	Digital Output (OUT0-7)
Output mode	NPN leakage type, it is 0V when outputs
Frequency	< 8kHz
Voltage level	DC24V
Max output current	+300mA
Max leakage current when off	25μΑ
Respond time to conduct	12µs
Respond time to close	80µs
Overcurrent protection	Support
Isolation method	optoelectronic isolation

Note:

The times in the form are typical based on the resistive load, and may change when the load circuit changes. Due to the leak-type output, the shutdown of the output will be obviously affected by the external load circuit, and the output frequency should not be set too high in the application.

3.4.2. Digital Output Wiring

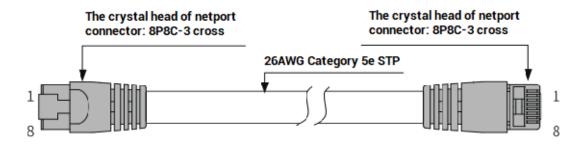

→ Wiring Note:

- The wiring principle of digital outputs OUT (0-7) is shown in the figure above. The
 external signal receiving end can be an optocoupler or a relay or solenoid valve, all
 can be connected as long as the input current does not exceed 300mA.
- For the connection of the public end, please connect the "EGND" port on the power supply to the negative pole of the DC power supply of the external input device. If the DC power supply of the external device and the expansion module power supply are in the same power supply system, this connection can also be omitted.

3.5. EtherCAT Bus Interface

EIO24088 bus expansion module has 2 100M EtherCAT communication interfaces, and they support EtherCAT protocol. EtherCAT IN is connected to main controller or

former level expansion module, but EtherCAT OUT is connected to drive equipment or next level expansion module, they can not be mixed. The pin definition is as follows:


\rightarrow Specification

Item	Specification	
Communication protocol	EtherCAT protocol	
Valid service	CoE(PDO, SDO), FoE	
Synahranization mathad	IO adopts input and output synchronization / DC-	
Synchronization method	distributed clock	
Physical level	100BASE-TX	
Duplex mode	Full duplex	
Topology	linear topology	
Transfer media	Cable	
Transfer distance	It is less than 100M between 2 nodes	
Process data	Maximum 1486 bytes of one single frame	
Synchronization shaking	<1us	
of two slave stations	< Tus	
Refresh	1000 digital input and output about is 30us, 16 servo	
neiresti	axes is about 100us	

$\rightarrow \textbf{Communication Cable Requirements}$

EtherCAT communication interface adopts standard Ethernet RJ45 interface.

The network cable adopts Category 5e STP, and the crystal head has a metal shell to reduce interference and to prevent information from being eavesdropped. As shown below:

Item	Specification
Cable type	Flexible crossover cable, Category 5e
traverse	twisted pair
Line pairs	4
Isolation	cross skeleton
Connector	Crystal head with iron shell
Cable material	PVC
Cable length	Less than 100m

Use RJ45 network cable connection method:

- When installing, hold the crystal head that is with the cable and insert it into the RJ45 interface until it makes a "click" sound (kada).
- In order to ensure the stability of communication, please fix the cables with cable ties.
- When disassembling, press the tail mechanism of the crystal head, and pull out the connector and the module in a horizontal direction.

Please use tube-type pre-insulated terminals and cables with appropriate wire diameters to connect the user terminals.

3.6. AXIS Differential Pulse Axis Interface

This product provides 8 local differential pulse axis interfaces, each interface is a standard DB26 female socket.

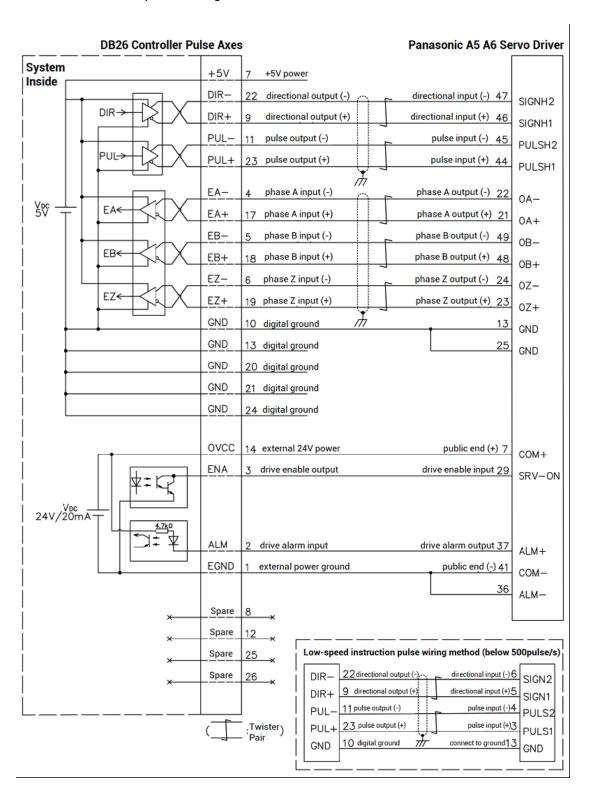
$\rightarrow \textbf{Interface Definition}$

Interface	Pin	Signal	Description
	1	EGND	Negative pole of IO 24V power
		IN24-	General input (recommended as
	2	31/ALM	driver alarm)
	3	OUT8-	General output (recommended as
	3	15/ENABLE	driver enable)
	4	EA-	Encoder differential input signal A-
	5	EB-	Encoder differential input signal B-
	6	EZ-	Encoder differential input signal Z-
	7	+5V	Positive pole of 5V power of
	ľ	+54	pulse/encoder signal
	8	Reserved	Reserved
	9	DIR+	Servo or step direction output +
	10	GND	Negative pole of 5V power of
10	10	GND	pulse/encoder signal
1 19	11	PUL-	Servo or step pulse output -
	12	Reserved	Reserved
	13	GND	Negative pole of 5V power of
926	13	GND	pulse/encoder signal
18	14	OVCC	Positive pole of IO 24V power
	15	Reserved	Reserved
	16	Reserved	Reserved
	17	EA+	Encoder differential input signal A+
	18	EB+	Encoder differential input signal B+
	19	EZ+	Encoder differential input signal Z+
	20	GND	Negative pole of 5V power of
	21	GND	pulse/encoder signal
	22	DIR-	Servo or step direction output -
	23	PUL+	Servo or step pulse output +
	24	CND	Negative pole of 5V power of
	24	GND	pulse/encoder signal
	25	Reserved	Reserved
	26	Reserved	Reserved

Note:

- ALM, ENABLE, CLR and INP are recommended to be used as axis IO, because the drive capacity is small.
- ♦ OVCC, +5V are only used for communication between the controller and the servo driver, please do not use it as power supply for other places.

3.6.1. AXIS Interface Signal Specification & Wiring


\rightarrow Specification:

Signal	Item	Description
	Signal type	Differential output signal
PUL/DIR	Voltage range	0-5V
	Maximum frequency	10MHz
	Signal type	Differential input signal
EA/EB/EZ	Voltage range	0-5V
	Maximum frequency	5MHz
	lu u ut uz atha d	NPN leak type, it is triggered
	Input method	when low electric level is input.
	Frequency	< 5kHz
	Impedance	6.8ΚΩ
1810.4.01	Voltage level	DC24V
IN24-31	The voltage to open	<10.5V
	The voltage to close	>10.7V
	Minimal current	-1.8mA (negative)
	Maximum current	-4mA (negative)
	Isolation	optoelectronic isolation
	0.444	NPN leak type, it is 0V when
	Output method	outputs
	Frequency	< 8kHz
OUT8-15	Voltage level	DC24V
	Maximum current	+50mA
	Overcurrent protection	No
	Isolation	optoelectronic isolation
+5V, GND	Maximum output current for 5V	50mA

OVCC, EGND Maximum output current	for 24V 50mA
-----------------------------------	--------------

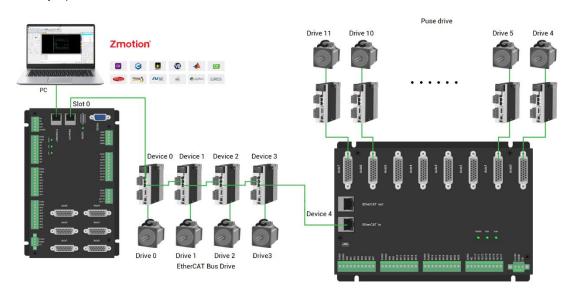
→ Wiring Reference:

Reference example of wiring with Panasonic A5/A6 servo driver:

\rightarrow Wiring Note:

- The wiring principle of the differential pulse axis interface is shown in the figure above, and the wiring methods of different types of drivers are different, please connect carefully.
- Please use STP, especially in bad environments, and make sure the shielding layer is fully grounded.

Chapter IV Expansion Module


4.1. EtherCAT Expansion Wiring Reference

EIO24088 expansion module is powered by the single power. The main power can supply power for IO, the main power uses 24V DC power.

After the expansion wiring is completed, each EIO expansion module does not need to develop again. It only needs to manually configure the unique IO address and axis address in the EtherCAT master controller, and it can be accessed after the configuration is completed. The IO address number is set through the bus command NODE_IO, and the program on the controller can access the resources on the expansion module only through the IO number.

When wiring, pay attention that EtherCAT IN is connected to the upper-level module, and EtherCAT OUT is connected to the lower-level module. The IN and OUT ports cannot be mixed.

EIO expansion module wiring reference example (take ZMC432 + EIO24088 as an example):

Involved number concepts in above figure are as follows: the bus-related command parameters will use the following numbers:

Slot number (slot):

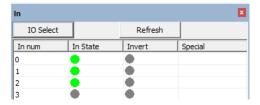
The slot number refers to the number of the bus interface on the controller, and the slot number of the EtherCAT bus is 0.

Device number (node):

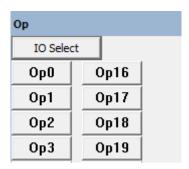
The device number refers to the number of all devices connected to a slot. It starts from 0 and is automatically numbered according to the connection sequence of the devices on the bus. You can view the total number of devices connected to the bus through the NODE_COUNT(slot) command.

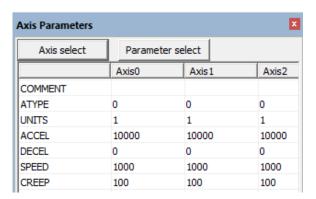
Drive number:

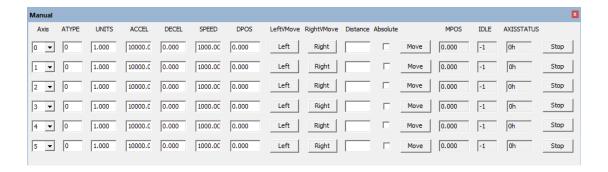
The controller will automatically identify the drive on the slot, and the number starts from 0, and the number is automatically numbered according to the connection sequence of the drive on the bus.


The drive number is different from the device number. Only the drive device number on the slot is assigned, and other devices are ignored. The drive number will be used when mapping the axis number.

4.2. EtherCAT Expansion Module Usage


- 1. Please follow the above wiring instructions to correctly complete the wiring of power supply, EtherCAT bus, IO signal and other modules.
- 2. After the controller is powered on, please use the ETHERNET interface and RS232 serial port to connect to ZDevelop.
- 3. The EIO24088 expansion module can only be used after bus initialization.
- ① Execute the bus initialization program, identify the device number of the EIO expansion module and the connected drive number during the initialization process, operate the axis mapping according to the drive number, and use the AXIS_ADDRESS command to map the axis, also operate the IO mapping of the expansion module according to the device number, and use the NODE_IO command to map the IO, set DRIVE_PROFILE and ATYPE;
- ② After successful initialization, enable the driver on the expansion module.
- ③ Enable and set the basic motion parameters ATYPE, UNITS, SPEED, ACCEL, FWD_IN, REV_IN and other axis parameters, and then send the motion command to drive the motor.
- 4. After the setting is completed, the communication can be established. If the communication is successful, "controller status" "slot 0 node" will display the information of the expansion module.


5. Corresponding input state values can be directly read through "IN" command, or through "ZDevelop/View/IN". Please refer to ZBasic Programming Manual.


6. Open or close outputs through "OP" command, or through "ZDevelop/View/OP". Please refer to ZBasic Programming Manual.

7. There are many parameters related to pulse-axis, and they can be set through relative commands, please refer to ZBasic Programming Manual. Or through "ZDevelop/View/Axis Parameter".

8. Through ZDevelop/View/Manual to operate relative motions.

→ Notes:

- Regardless of whether the IO on the expansion module is used or not, the NODE IO command needs to be used to map the input and output numbers of the EIO24088.
 The DRIVE_PROFILE of the expansion module is set to 0, and the ATYPE is set to 65, but the actual axis type is not 65 because it is a pulse type drive. The configuration of the real axis type uses the SDO command to configure the data dictionary 6011h settings.
- If a hard limit alarm occurs during the initialization process, you can point the
 mapping number of the hard limit FWD_IN and REV_IN to -1 in the axis parameter
 window, which means no mapping, and then modify FWD_IN and REV_IN when the
 limit switch needs to be connected.

4.3. EtherCAT Bus Expansion Resource Mapping

→ IO Mapping:

The program on the controller can access the resources on the expansion module only through the IO number. The IO number of the EtherCAT bus expansion module is set through the bus command NODE_IO, and the input and output are configured at the same time.

When IO mapping, first check the maximum IO number of the controller itself (including the external IO interface and the interface in the pulse axis), and then use the command to set.

If the extended IO coincides with the IO number of the controller itself, the two will work at the same time, so the mapped number of the IO mapping must not be repeated in the entire control system.

IO mapping syntax:

NODE_IO(slot, node) = iobase

slot: slot number, 0-default

node: device number, starting from 0

iobase: mapping the IO start number, the setting result will only be a multiple of 8

Example:

NODE_IO(0,0)=32 'set the IO start number of slot 0 interface device 0 to 32

If device 0 is EIO24088, after configuration according to the above syntax, the IO numbers corresponding to input INO-23 are 32-55 in turn, the general input port numbers in the axis interface are 56-63, and the drive alarm inputs of axes AXIS 0-3 are 56-59 respectively. The IO numbers corresponding to the output OUTO-7 are 32-39 in sequence, the general output port numbers in the axis interface are 40-47, and the drive enable outputs of the axes AXIS 0-3 are 40-43 respectively.

→ AXIS Mapping:

Before using the axis of the expansion module, you need to use the AXIS_ADDRESS command to map the axis number, and the axis mapping also needs to pay attention to the axis number of the entire system cannot be repeated. The mapping syntax of the EIO series extended axis is the same as that of the bus driver.

Axis mapping syntax:

AXIS_ADDRESS(axis number)=(slot number << 16)+driver number+1

Example:

 $AXIS_ADDRESS(0)=(0<<16)+0+1$

'the first drive on the EtherCAT bus, drive number 0, bound as axis 0 $AXIS_ADDRESS(1)=(0<<16)+1+1$

'the second drive on the EtherCAT bus, drive number 1, bound as axis 1

If the first node is EIO24088, and EIO24088 is connected to drive, then driver 0 here is the first pulse driver connected to EIO24088, otherwise it is the EtherCAT driver.

Chapter V Data Dictionary

SDO command configures drive parameters:

For example: the real axis type setting of the extended pulse axis is set through the data dictionary 6011h, (refer to the parameters in the table below, set in order according to the axis number, the first drive sets the data dictionary 6011h+0*800h, and the second drive sets 6011h+ 1*800h, and so on, add 800h for each drive, and the same for other parameters).

5.1. Input & Output

Number	Description	Туре	Read/write	Others
6000h	Input	ARRAY U8	RO	1-close
6200h	Output	ARRAY U8	RW	1-open
6206h	Abnormal output mode	ARRAY U8	RW	1-use abnormally output
6207h	Abnormal output usage status	ARRAY U8	RW	

5.2. The First Drive on The First Expansion Module

Number	Description	Туре	Read/write	Others
				Axis type of expansion board:
				0: virtual axis
6011h Atype	UNSIGNED8	RW	• 1: step or servo of pulse	
			directional	
			• 2: servo of analog signal	
				control
				3: orthogonal encoder
				• 4: step + encoder

				 5: step + pulse directional encoder 6: pulse directional encoder 7: pulse directional step/servo + EZ signal input
6012h	Invert_Step	UNSIGNED16	RW	See controller introduction Invert_Step
6013h	lolevel	UNSIGNED32	RW	B0-origin electrical level B1-limit position level B8-automatic use enable signal B9-use ALM signal to alarm B11-B15: origin selection signal
6014h	Axisstatus	UNSIGNED32	RO	See controller introduction AXISSTATUS
6040h	Controlword	UNSIGNED16	RW	Relative master controller DRIVE_CONTROLWORD: B0- Switch on B1- Enable voltage B3- Enable operation B7- Fault reset
6041h	Statusword	UNSIGNED16	RO	Relative master controller DRIVE_STATUS: B0 Ready to switch on B1 Switch on

				B2 Operation enabled
				B3 Fault
				B4 Voltage enabled
				B5 Quick stop
				B7 Warning
				B8 EZ status
				B9 Remote
				B10 Target reached
				B11 Internal limit active
				B12-13 Operation mode
				specific B14 EA status
				B15 EB status
6060h	Modes of	INTEGER 8	RW	6: home the origin port
000011	operation	INTEGER	1100	8: cycle location
607Eh	Polarity	INTEGER 8	RW	1- opposite direction
OOTEII	1 Olality	INTEGER	1100	0- normal direction
60fDh	Drive input	UNSIGNED	RW	
ווטוטט	compatibility	32	ΠVV	

Chapter VI Run and Maintain

The correct operation and maintenance of the device can not only guarantee and extend the life cycle of the equipment itself, but also take technical management measures according to the pre-specified plan or the corresponding technical conditions to prevent equipment performance degradation or reduce the probability of equipment failure.

6.1. Regular Inspection and Maintenance

The working environment has an impact on the device. Therefore, it is usually inspected regularly based on the inspection cycle of 6 months to 1 year. The inspection cycle of the device can be appropriately adjusted according to the surrounding environment to make it work within the specified standard environment.

Check item	Check content	Inspection standards
power supply	Check whether the voltage is rated	DC 24 V (-10%~10%)
	Whether the ambient temperature is within the specified range (when installed in the cabinet, the temperature inside the cabinet is the ambient temperature)	-20 °C -60 °C
surroundings	Whether the ambient humidity is within the specified range (when installed in the cabinet, the humidity in the cabinet is the ambient humidity)	10 %-9 5 % non-condensing
	Is there direct sunlight	No
	With or without droplets of water, oil, chemicals, etc.	No
	Whether there is dust, salt, iron filings, dirt	No
	Whether there is corrosive gas	No
	Whether there are flammable and explosive gases or articles	No

	Whether the device is subjected to vibration or shock	Should be within the range of vibration resistance and impact resistance
	Is the heat dissipation good	Keep good ventilation and heat dissipation
	Whether the basic unit and the expansion unit are installed firmly	The mounting screws should be tightened without loosening
Installation and Wiring Status	Whether the connecting cables of the basic unit and the expansion unit are fully inserted	The connection cable cannot be loosened
	Are the screws of the external wiring loose	Screws should be tightened without loosening
	Whether the cable is damaged, aged, cracked	The cable must not have any abnormal appearance

6.2. Common Problems

Problems	Suggestions	
	1.	Check whether the ATYPE of the controller is correct.
	2.	Check whether hardware position limit, software
		position limit, alarm signal work, and whether axis
		states are normal.
	3.	Check whether motor is enabled successfully.
	4.	Confirm whether pulse amount UNITS and speed
Motor does not rotate.		values are suitable. If there is the encoder feedback,
Wiotor does not rotate.		check whether MPOS changes.
	5.	Check whether pulse mode and pulse mode of drive
		are matched.
	6.	Check whether alarm is produced on motion
		controller station or drive station.
	7.	Check whether the wiring is correct.
	8.	Confirm whether controller sends pulses normally.
The position limit signal is	1.	Check whether the limit sensor is working normally,

invalid.		and whether the "input" view can watch the signal
		change of the limit sensor.
	2.	Check whether the mapping of the limit switch is
		correct.
	3.	Check whether the limit sensor is connected to the
		common terminal of the controller.
No signal comes to the input.	1.	Check whether the limit sensor is working normally,
		and whether the "input" view can watch the signal
		change of the limit sensor.
	2.	Check whether the mapping of the limit switch is
		correct.
	3.	Check whether the limit sensor is connected to the
		common terminal of the controller.
	1.	Check whether IO power is needed.
The output does not work.	2.	Check whether the output number matches the ID of
		the IO board.
	1.	Check whether the power of the power supply is
		sufficient. At this time, it is best to supply power to
POWER led is ON, RUN led		the controller alone, and restart the controller after
is OFF.		adjustment.
	2.	Check whether the ALM light flickers regularly
		(hardware problem).
RUN led is ON, ALM led is	1.	Program running error, please check ZDevelop error
ON.		code, and check application program.
	1.	Check whether the serial port parameters are
		modified by the running program, you can check all
		the current serial port configurations
Fail to connect controller		through ?*SETCOM.
to PC through serial port.	2.	Check whether the serial port parameters of the PC
		match the controller.
	3.	Open the device manager and check whether the
		serial driver of the PC is normal.
CAN expansion module	1.	Check the CAN wiring and power supply circuit,
CAN expansion module cannot be connected.		whether the 120 ohm resistor is installed at both
		ends.

	2.	Check the master-slave configuration,
		communication speed configuration, etc.
	3.	Check the DIP switch to see if there are multiple
		expansion modules with the same ID.
	4.	Use twisted-pair cables, ground the shielding layer,
		and use dual power supplies for severe interference
		(the main power supply of the expansion module and
		the IO power supply are separately powered)
Fail to connect controller to PC through net port.	1.	Check IP address of PC, it needs to be at the same
		segment with controller IP address.
	2.	Check controller IP address, it can be checked and
		captured after connection through serial port.
	3.	When net port led is off, please check wiring.
	4.	Check whether controller power led POWER and
		running indicator led RUN are ON normally.
	5.	Check whether the cable is good quality, change one
		better cable to try again.
	6.	Check whether controller IP conflicts with other
		devices.
	7.	Check whether controller net port channel ETH are all
		occupied by other devices, disconnect to other
		devices, then try again.
	8.	When there are multiple net cards, don't use other net
		cards, or change one computer to connect again.
	9.	Check PC firewall setting.
	10.	Use "Packet Internet Groper" tool (Ping), check
		whether controller can be Ping, if it can't, please
		check physical interface or net cable.
	11.	Check IP address and MAC address through arp-a.